You are here

Feed aggregator

Moldova: EU takes steps towards the elimination of customs duties for seven agricultural products

Europäischer Rat (Nachrichten) - Thu, 09/18/2025 - 20:59
The Council adopted a decision on the position that the EU will take in the EU – Moldova Association Committee in Trade Configuration as regards increasing market access for some exports not yet liberalised.

Paris Agreement: EU submits statement of intent to the UNFCCC on the post-2030 NDC

Európai Tanács hírei - Thu, 09/18/2025 - 20:59
Today, the Council approved the EU’s statement of intent on its post-2030 NDC, outlining its intention to submit an NDC ahead of COP30.

Moldova: EU takes steps towards the elimination of customs duties for seven agricultural products

Európai Tanács hírei - Thu, 09/18/2025 - 20:59
The Council adopted a decision on the position that the EU will take in the EU – Moldova Association Committee in Trade Configuration as regards increasing market access for some exports not yet liberalised.

Vorständin der US-Notenbank: Trump will Lisa Cook unbedingt loswerden

Blick.ch - Thu, 09/18/2025 - 20:45
Er will sie loswerden. Trumps Begehren, die Vorständin der US-Notenbank Fed, Lisa Cook, zu entlassen, wurde aber abgeschmettert. Nun wendet er sich an eine Etage höher.
Categories: Pályázatok, Swiss News

Tebboune préside une réunion du Haut Conseil de sécurité

Algérie 360 - Thu, 09/18/2025 - 20:44

Le président de la République, Abdelmadjid Tebboune, a présidé aujourd’hui une réunion du Haut Conseil de sécurité. En sa qualité de chef suprême des forces […]

L’article Tebboune préside une réunion du Haut Conseil de sécurité est apparu en premier sur .

Categories: Afrique

How robust are machine learning approaches for improving food security amid crises? Evidence from COVID-19 in Uganda

Amidst different global food insecurity challenges, like the COVID-19 pandemic and economic turmoil, this article investigates the potential of machine learning (ML) to enhance food insecurity forecasting. So far, only few existing studies have used pre-shock training data to predict food insecurity and if they did, they have neither done this at the household-level nor systematically tested the performance and robustness of ML algorithms during the shock phase. To address this research gap, we use pre-COVID trained models to predict household-level food insecurity during the COVID-19 pandemic in Uganda and propose a new approach to evaluate the performance and robustness of ML models. The objective of this study is therefore to find high-performance and robust ML algorithms during a shock period, which is both methodologically innovative and practically relevant for food insecurity research. First, we find that ML can work well in a shock context when only pre-shock food security data are available. We can identify 80% of food-insecure households during the COVID-19 pandemic based on pre-shock trained models at the cost of falsely classifying around 40% of food-secure households as food insecure. Second, we show that the extreme gradient boosting algorithm, trained by balanced weighting, works best in terms of prediction quality. We also identify the most important predictors and find that demographic and asset features play a crucial role in predicting food insecurity. Last but not least, we also make a contribution by showing how different ML models should be evaluated in terms of their area under curve (AUC) value, the ability of the model to correctly classify positive and negative cases, and in terms of the change in AUC in different situations.

How robust are machine learning approaches for improving food security amid crises? Evidence from COVID-19 in Uganda

Amidst different global food insecurity challenges, like the COVID-19 pandemic and economic turmoil, this article investigates the potential of machine learning (ML) to enhance food insecurity forecasting. So far, only few existing studies have used pre-shock training data to predict food insecurity and if they did, they have neither done this at the household-level nor systematically tested the performance and robustness of ML algorithms during the shock phase. To address this research gap, we use pre-COVID trained models to predict household-level food insecurity during the COVID-19 pandemic in Uganda and propose a new approach to evaluate the performance and robustness of ML models. The objective of this study is therefore to find high-performance and robust ML algorithms during a shock period, which is both methodologically innovative and practically relevant for food insecurity research. First, we find that ML can work well in a shock context when only pre-shock food security data are available. We can identify 80% of food-insecure households during the COVID-19 pandemic based on pre-shock trained models at the cost of falsely classifying around 40% of food-secure households as food insecure. Second, we show that the extreme gradient boosting algorithm, trained by balanced weighting, works best in terms of prediction quality. We also identify the most important predictors and find that demographic and asset features play a crucial role in predicting food insecurity. Last but not least, we also make a contribution by showing how different ML models should be evaluated in terms of their area under curve (AUC) value, the ability of the model to correctly classify positive and negative cases, and in terms of the change in AUC in different situations.

How robust are machine learning approaches for improving food security amid crises? Evidence from COVID-19 in Uganda

Amidst different global food insecurity challenges, like the COVID-19 pandemic and economic turmoil, this article investigates the potential of machine learning (ML) to enhance food insecurity forecasting. So far, only few existing studies have used pre-shock training data to predict food insecurity and if they did, they have neither done this at the household-level nor systematically tested the performance and robustness of ML algorithms during the shock phase. To address this research gap, we use pre-COVID trained models to predict household-level food insecurity during the COVID-19 pandemic in Uganda and propose a new approach to evaluate the performance and robustness of ML models. The objective of this study is therefore to find high-performance and robust ML algorithms during a shock period, which is both methodologically innovative and practically relevant for food insecurity research. First, we find that ML can work well in a shock context when only pre-shock food security data are available. We can identify 80% of food-insecure households during the COVID-19 pandemic based on pre-shock trained models at the cost of falsely classifying around 40% of food-secure households as food insecure. Second, we show that the extreme gradient boosting algorithm, trained by balanced weighting, works best in terms of prediction quality. We also identify the most important predictors and find that demographic and asset features play a crucial role in predicting food insecurity. Last but not least, we also make a contribution by showing how different ML models should be evaluated in terms of their area under curve (AUC) value, the ability of the model to correctly classify positive and negative cases, and in terms of the change in AUC in different situations.

Trump-Gattin überrascht beim Treffen mit Prinzessin Kate: «So glücklich habe ich Melania noch nie gesehen»

Blick.ch - Thu, 09/18/2025 - 20:21
Ohne US-Präsident Donald Trump verbrachte dessen Ehefrau Melania am Donnerstag einige Stunden mit Prinzessin Kate. Die beiden Frauen wirkten gelöst und entspannt, scherzten viel und Melania lächelte sogar.
Categories: Pályázatok, Swiss News

US deportees sue Ghana over 'illegal' detention

BBC Africa - Thu, 09/18/2025 - 20:18
Despite opposition to the deal, Ghana's president says 40 more deportees will arrive from the US.

Seit Finanzkrise 2008 verlassen: Geister-Ferienhäuser auf Mallorca werden endlich verkauft

Blick.ch - Thu, 09/18/2025 - 20:13
Auf der Ferieninsel Mallorca gibts einen Immobilien-Boom! Jetzt wird sogar eine Geistersiedlung wieder zum Leben erweckt, die eigentlich längst vergessen war.

Brand in Au SG: «Ich schaute aus dem Fenster und sah direkt in die Flammen»

Blick.ch - Thu, 09/18/2025 - 20:01
Dramatische Szenen in Au SG: Ein leerstehendes Haus gerät am frühen Donnerstagmorgen in Brand, Nachbarn mussten fluchtartig evakuiert werden. Anwohnerinnen berichten von der Nacht.

In Au SG brennt ein Haus lichterloh – Besitzer ist geschockt: «Wir wollten die Wohnungen vermieten – und dann brennt die Hütte ab»

Blick.ch - Thu, 09/18/2025 - 20:01
Dramatische Szenen: Ein leerstehendes Haus in Au gerät am frühen Donnerstagmorgen in Brand, Nachbarn mussten fluchtartig evakuiert werden. Der Hausbesitzer ist traurig, er kann sich den Brand nicht erklären. Die Ermittlungen zur Brandursache laufen.

Somalie – Algérie : le lieu du match enfin connu (officiel)

Algérie 360 - Thu, 09/18/2025 - 19:57

C’était dans l’air, c’est désormais officiel. La Somalie accueillera l’Algérie en… Algérie. L’information a été confirmée cet après-midi par la Fédération algérienne de football. C’est […]

L’article Somalie – Algérie : le lieu du match enfin connu (officiel) est apparu en premier sur .

Categories: Afrique

Fast 30 Stunden Reisezeit: Das ist neu der längste Flug der Welt

Blick.ch - Thu, 09/18/2025 - 19:56
Eine chinesische Airline startet bald die längste Passagierstrecke der Welt. Wer hier einsteigt, sitzt bis zu 29 Stunden im Flieger – ein neuer Rekord.

Danish presidency draft gives countries leeway on Critical Medicines Act

Euractiv.com - Thu, 09/18/2025 - 19:55
Council draft would lower the threshold for Commission-led procurement from nine member states to six
Categories: European Union

A Csontváry életéről szóló könyvet mutatják be a füleki könyvtárban

Bumm.sk (Szlovákia/Felvidék) - Thu, 09/18/2025 - 19:54
Csütörtök délután mutatják be a füleki városi könyvtárban a Csontváry Kosztka Tivadar festőművész és gyógyszerész életéről szóló kiadványt.

«In Sekunden war das Geld weg»: Kreditkarten-Panne bei Swiss-Flug nach Sizilien

Blick.ch - Thu, 09/18/2025 - 19:50
Sebastian Meier freute sich auf die Familienferien, als er die Swiss-Flüge nach Sizilien buchen wollte. Doch dann ging etwas schief. Seine Kreditkarte wurde insgesamt dreimal belastet. Das Geld war in Sekunden weg. Aber zurück kommt es nicht so schnell.

Pages

THIS IS THE NEW BETA VERSION OF EUROPA VARIETAS NEWS CENTER - under construction
the old site is here

Copy & Drop - Can`t find your favourite site? Send us the RSS or URL to the following address: info(@)europavarietas(dot)org.